Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetics of autoimmunity in plants: an evolutionary genetics perspective.

Identifieur interne : 000145 ( Main/Exploration ); précédent : 000144; suivant : 000146

Genetics of autoimmunity in plants: an evolutionary genetics perspective.

Auteurs : Wei-Lin Wan [Singapour] ; Sang-Tae Kim [Corée du Sud] ; Baptiste Castel [Singapour] ; Nuri Charoennit [Singapour] ; Eunyoung Chae [Singapour]

Source :

RBID : pubmed:32970825

Abstract

Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.

DOI: 10.1111/nph.16947
PubMed: 32970825


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetics of autoimmunity in plants: an evolutionary genetics perspective.</title>
<author>
<name sortKey="Wan, Wei Lin" sort="Wan, Wei Lin" uniqKey="Wan W" first="Wei-Lin" last="Wan">Wei-Lin Wan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sang Tae" sort="Kim, Sang Tae" uniqKey="Kim S" first="Sang-Tae" last="Kim">Sang-Tae Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662</wicri:regionArea>
<wicri:noRegion>14662</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castel, Baptiste" sort="Castel, Baptiste" uniqKey="Castel B" first="Baptiste" last="Castel">Baptiste Castel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Charoennit, Nuri" sort="Charoennit, Nuri" uniqKey="Charoennit N" first="Nuri" last="Charoennit">Nuri Charoennit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chae, Eunyoung" sort="Chae, Eunyoung" uniqKey="Chae E" first="Eunyoung" last="Chae">Eunyoung Chae</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32970825</idno>
<idno type="pmid">32970825</idno>
<idno type="doi">10.1111/nph.16947</idno>
<idno type="wicri:Area/Main/Corpus">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000046</idno>
<idno type="wicri:Area/Main/Curation">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000046</idno>
<idno type="wicri:Area/Main/Exploration">000046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetics of autoimmunity in plants: an evolutionary genetics perspective.</title>
<author>
<name sortKey="Wan, Wei Lin" sort="Wan, Wei Lin" uniqKey="Wan W" first="Wei-Lin" last="Wan">Wei-Lin Wan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sang Tae" sort="Kim, Sang Tae" uniqKey="Kim S" first="Sang-Tae" last="Kim">Sang-Tae Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662</wicri:regionArea>
<wicri:noRegion>14662</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castel, Baptiste" sort="Castel, Baptiste" uniqKey="Castel B" first="Baptiste" last="Castel">Baptiste Castel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Charoennit, Nuri" sort="Charoennit, Nuri" uniqKey="Charoennit N" first="Nuri" last="Charoennit">Nuri Charoennit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chae, Eunyoung" sort="Chae, Eunyoung" uniqKey="Chae E" first="Eunyoung" last="Chae">Eunyoung Chae</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, National University of Singapore, Singapore, 117558</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32970825</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetics of autoimmunity in plants: an evolutionary genetics perspective.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16947</ELocationID>
<Abstract>
<AbstractText>Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Wei-Lin</ForeName>
<Initials>WL</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2062-8466</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sang-Tae</ForeName>
<Initials>ST</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1645-6021</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castel</LastName>
<ForeName>Baptiste</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2722-0228</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Charoennit</LastName>
<ForeName>Nuri</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2210-4615</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chae</LastName>
<ForeName>Eunyoung</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0889-9837</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOE2019-T2-1-134</GrantID>
<Agency>Ministry of Education, Singapore</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>R-154-000-B20-114</GrantID>
<Agency>National University of Singapore</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>R-154-000-B33-114</GrantID>
<Agency>National University of Singapore</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NLR</Keyword>
<Keyword MajorTopicYN="N">autoimmunity</Keyword>
<Keyword MajorTopicYN="N">cell death</Keyword>
<Keyword MajorTopicYN="N">epistasis</Keyword>
<Keyword MajorTopicYN="N">genetic incompatibility</Keyword>
<Keyword MajorTopicYN="N">guardee</Keyword>
<Keyword MajorTopicYN="N">hybrid necrosis</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>17</Hour>
<Minute>15</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32970825</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16947</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adachi H, Derevnina L, Kamoun S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology 50: 121-131.</Citation>
</Reference>
<Reference>
<Citation>Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences, USA 104: 2531-2536.</Citation>
</Reference>
<Reference>
<Citation>Alcazar R, Garcia AV, Kronholm I, de Meaux J, Koornneef M, Parker JE, Reymond M. 2010. Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics 42: 1135-1139.</Citation>
</Reference>
<Reference>
<Citation>Alcazar R, Garcia AV, Parker JE, Reymond M. 2009. Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proceedings of the National Academy of Sciences, USA 106: 334-339.</Citation>
</Reference>
<Reference>
<Citation>Alcazar R, von Reth M, Bautor J, Chae E, Weigel D, Koornneef M, Parker JE. 2014. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. PLoS Genetics 10: e1004848.</Citation>
</Reference>
<Reference>
<Citation>Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR. 2013. Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytologist 197: 223-237.</Citation>
</Reference>
<Reference>
<Citation>Atanasov KE, Liu C, Erban A, Kopka J, Parker JE, Alcazar R. 2018. NLR mutations suppressing immune hybrid incompatibility and their effects on disease resistance. Plant Physiology 177: 1152-1169.</Citation>
</Reference>
<Reference>
<Citation>Bailey K, Cevik V, Holton N, Byrne-Richardson J, Sohn KH, Coates M, Woods-Tor A, Aksoy HM, Hughes L, Baxter L et al. 2011. Molecular cloning of ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Molecular Plant-Microbe Interactions 24: 827-838.</Citation>
</Reference>
<Reference>
<Citation>Bakker EG, Toomajian C, Kreitman M, Bergelson J. 2006. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18: 1803-1818.</Citation>
</Reference>
<Reference>
<Citation>Barragan CA, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E. 2020. A singleton NLR of recent origin causes hybrid necrosis in Arabidopsis thaliana. bioRxiv. doi: 10.1101/2020.05.18.101451.</Citation>
</Reference>
<Reference>
<Citation>Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van de Weyer AL, Zaidem M, Ho WWH, Wang G et al. 2019. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genetics 15: e1008313.</Citation>
</Reference>
<Reference>
<Citation>Barreto FS, Pereira RJ, Burton RS. 2015. Hybrid dysfunction and physiological compensation in gene expression. Molecular Biology and Evolution 32: 613-622.</Citation>
</Reference>
<Reference>
<Citation>Barton NH. 2000. Genetic hitchhiking. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355: 1553-1562.</Citation>
</Reference>
<Reference>
<Citation>Baumgarten A, Cannon S, Spangler R, May G. 2003. Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165: 309-319.</Citation>
</Reference>
<Reference>
<Citation>Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ. 2018. Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant and Cell Physiology 59: 2398-2408.</Citation>
</Reference>
<Reference>
<Citation>Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA et al. 2016. Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28: 146-159.</Citation>
</Reference>
<Reference>
<Citation>den Boer E, Pelgrom KT, Zhang NW, Visser RG, Niks RE, Jeuken MJ. 2014. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theoretical and Applied Genetics. 127: 1805-1816.</Citation>
</Reference>
<Reference>
<Citation>Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D. 2007. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biology 5: e236-e236.</Citation>
</Reference>
<Reference>
<Citation>Bomblies K, Weigel D. 2007. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nature Reviews Genetics 8: 382-393.</Citation>
</Reference>
<Reference>
<Citation>Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences, USA 108: 16463-16468.</Citation>
</Reference>
<Reference>
<Citation>Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JD. 1998. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10: 1847-1860.</Citation>
</Reference>
<Reference>
<Citation>Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156: 1207-1222.</Citation>
</Reference>
<Reference>
<Citation>Cai X, Xu H, Chen ZJ. 2017. Prion-like polymerization in immunity and inflammation. Cold Spring Harbor Perspectives in Biology 9: a023580.</Citation>
</Reference>
<Reference>
<Citation>Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C et al. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics 43: 956-963.</Citation>
</Reference>
<Reference>
<Citation>Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. 2019. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytologist 222: 966-980.</Citation>
</Reference>
<Reference>
<Citation>Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN. 2016. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proceedings of the National Academy of Sciences, USA 113: 10204-10209.</Citation>
</Reference>
<Reference>
<Citation>Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martin-Pizarro C, Laitinen RA, Rowan BA, Tenenboim H et al. 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159: 1341-1351.</Citation>
</Reference>
<Reference>
<Citation>Chen C, Chen H, Lin YS, Shen JB, Shan JX, Qi P, Shi M, Zhu MZ, Huang XH, Feng Q et al. 2014. A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications 5: 3357.</Citation>
</Reference>
<Reference>
<Citation>Chen C, Chen H, Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX. 2013. Genetic and physiological analysis of a novel type of interspecific hybrid weakness in rice. Molecular Plant 6: 716-728.</Citation>
</Reference>
<Reference>
<Citation>Chen C, E Z, Lin H-X. 2016. Evolution and molecular control of hybrid incompatibility in plants. Frontiers in Plant Science 7: 1208.</Citation>
</Reference>
<Reference>
<Citation>Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V. 2010. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. New Phytologist 187: 941-956.</Citation>
</Reference>
<Reference>
<Citation>Chou JY, Leu JY. 2015. The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front Genetics 6: 187.</Citation>
</Reference>
<Reference>
<Citation>Christopoulou M, Wo SR, Kozik A, McHale LK, Truco MJ, Wroblewski T, Michelmore RW. 2015. Genome-wide architecture of disease resistance genes in lettuce. G3 5: 2655-2669.</Citation>
</Reference>
<Reference>
<Citation>Chu CG, Faris JD, Friesen TL, Xu SS. 2006. Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theoretical and Applied Genetics. 112: 1374-1381.</Citation>
</Reference>
<Reference>
<Citation>Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P et al. 2018. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications 9: 1718.</Citation>
</Reference>
<Reference>
<Citation>Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA et al. 2007. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317: 338-342.</Citation>
</Reference>
<Reference>
<Citation>Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nature Reviews Genetics 9: 938-950.</Citation>
</Reference>
<Reference>
<Citation>Cook DE, Mesarich CH, Thomma BPHJ. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual review of Phytopathology 53: 541-563.</Citation>
</Reference>
<Reference>
<Citation>Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663-676.</Citation>
</Reference>
<Reference>
<Citation>Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.</Citation>
</Reference>
<Reference>
<Citation>Daskalov A, Habenstein B, Sabaté R, Berbon M, Martinez D, Chaignepain S, Coulary-Salin B, Hofmann K, Loquet A, Saupe SJ. 2016. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proceedings of the National Academy of Sciences, USA 113: 2720-2725.</Citation>
</Reference>
<Reference>
<Citation>Daskalov A, Saupe SJ. 2015. As a toxin dies a prion comes to life: a tentative natural history of the [Het-s] prion. Prion 9: 184-189.</Citation>
</Reference>
<Reference>
<Citation>Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ. 2005. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17: 1292-1305.</Citation>
</Reference>
<Reference>
<Citation>Deng J, Fang L, Zhu X, Zhou B, Zhang T. 2019. A CC-NBS-LRR gene induces hybrid lethality in cotton. Journal of Experimental Botany 70: 5145-5156.</Citation>
</Reference>
<Reference>
<Citation>Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G et al. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355: 962-965.</Citation>
</Reference>
<Reference>
<Citation>El Kasmi F, Chung EH, Anderson RG, Li J, Wan L, Eitas TK, Gao Z, Dangl JL. 2017. Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences, USA 114: E7385-E7394.</Citation>
</Reference>
<Reference>
<Citation>Fishman L, Sweigart AL. 2018. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. Annual Review of Plant Biology 69: 707-731.</Citation>
</Reference>
<Reference>
<Citation>Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D. 2019. NBS-encoding genes in Brassica napus evolved rapidly after allopolyploidization and co-localize with known disease resistance loci. Frontiers Plant Science 10: 26.</Citation>
</Reference>
<Reference>
<Citation>Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han GZ. 2018. Out of water: the origin and early diversification of plant R-genes. Plant Physiology 177: 82-89.</Citation>
</Reference>
<Reference>
<Citation>Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. 2017. Regulated forms of cell death in fungi. Frontiers in Microbiology 8: 1837.</Citation>
</Reference>
<Reference>
<Citation>Goritschnig S, Steinbrenner AD, Grunwald DJ, Staskawicz BJ. 2016. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector. New Phytologist 210: 984-996.</Citation>
</Reference>
<Reference>
<Citation>Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, Ness F, Cescau S, Soragni A, Leitz D et al. 2010. The mechanism of prion inhibition by HET-S. Molecular Cell 38: 889-899.</Citation>
</Reference>
<Reference>
<Citation>Group TAP, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS et al. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1-20.</Citation>
</Reference>
<Reference>
<Citation>Han G-Z. 2019. Origin and evolution of the plant immune system. New Phytologist 222: 70-83.</Citation>
</Reference>
<Reference>
<Citation>Holub EB. 2001. The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics 2: 516-527.</Citation>
</Reference>
<Reference>
<Citation>Holub EB. 2007. Natural variation in innate immunity of a pioneer species. Current Opinion in Plant Biology 10: 415-424.</Citation>
</Reference>
<Reference>
<Citation>van der Hoorn RA, Kamoun S. 2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20: 2009-2017.</Citation>
</Reference>
<Reference>
<Citation>Horger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RA, Rose LE. 2012. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense. PLoS Genetics 8: e1002813.</Citation>
</Reference>
<Reference>
<Citation>Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang H-W, Sui S-F, Chai J. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350: 399-404.</Citation>
</Reference>
<Reference>
<Citation>Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG. 2017. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathogens 13: e1006376.</Citation>
</Reference>
<Reference>
<Citation>Ichitani K, Namigoshi K, Sato M, Taura S, Aoki M, Matsumoto Y, Saitou T, Marubashi W, Kuboyama T. 2007. Fine mapping and allelic dosage effect of Hwc1, a complementary hybrid weakness gene in rice. Theoretical and Applied Genetics. 114: 1407-1415.</Citation>
</Reference>
<Reference>
<Citation>Ichitani K, Taura S, Sato M, Kuboyama T. 2016. Distribution of Hwc2-1, a causal gene of a hybrid weakness, in the World Rice Core collection and the Japanese Rice mini Core collection: its implications for varietal differentiation and artificial selection. Breeding Science 66: 776-789.</Citation>
</Reference>
<Reference>
<Citation>Ilyas M, Horger AC, Bozkurt TO, van den Burg HA, Kaschani F, Kaiser M, Belhaj K, Smoker M, Joosten MH, Kamoun S et al. 2015. Functional divergence of two secreted immune proteases of tomato. Current Biology 25: 2300-2306.</Citation>
</Reference>
<Reference>
<Citation>Innes RW. 2015. Exploiting combinatorial interactions to expand NLR specificity. Cell Host & Microbe 18: 265-267.</Citation>
</Reference>
<Reference>
<Citation>Ispolatov I, Doebeli M. 2010. On the evolution of decoys in plant immune systems. Biological Theory 5: 256-263.</Citation>
</Reference>
<Reference>
<Citation>Jacquemin J, Ammiraju JSS, Haberer G, Billheimer DD, Yu Y, Liu LC, Rivera LF, Mayer K, Chen M, Wing RA. 2014. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion. Molecular Plant 7: 642-656.</Citation>
</Reference>
<Reference>
<Citation>Jeuken M, Lindhout P. 2002. Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. TAG. Theoretical and Applied Genetics. 105: 384-391.</Citation>
</Reference>
<Reference>
<Citation>Jeuken MJ, Zhang NW, McHale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, Visser RG, Niks RE. 2009. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Plant Cell 21: 3368-3378.</Citation>
</Reference>
<Reference>
<Citation>Jiao W-B, Schneeberger K. 2020. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nature Communications 11: 989.</Citation>
</Reference>
<Reference>
<Citation>Johnson KC, Dong OX, Huang Y, Li X. 2012. A rolling stone gathers no moss, but resistant plants must gather their moses. Cold Spring Harbor Symposia on Quantitative Biology 77: 259-268.</Citation>
</Reference>
<Reference>
<Citation>Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Jorgensen TH, Emerson BC. 2008. Functional variation in a disease resistance gene in populations of Arabidopsis thaliana. Molecular Ecology 17: 4912-4923.</Citation>
</Reference>
<Reference>
<Citation>Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. 2019. Help wanted: helper NLRs and plant immune responses. Current Opinion in Plant Biology 50: 82-94.</Citation>
</Reference>
<Reference>
<Citation>Kaneko YH, Inukai T, Suehiro N, Natsuaki T, Masuta C. 2004. Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by turnip mosaic virus infection in Arabidopsis thaliana. TAG. Theoretical and Applied Genetics. 110: 33-40.</Citation>
</Reference>
<Reference>
<Citation>Karasov TL, Chae E, Herman JJ, Bergelson J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29: 666-680.</Citation>
</Reference>
<Reference>
<Citation>Karasov TL, Kniskern JM, Gao L, DeYoung BJ, Ding J, Dubiella U, Lastra RO, Nallu S, Roux F, Innes RW et al. 2014. The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512: 436-440.</Citation>
</Reference>
<Reference>
<Citation>Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA. 2010. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiology 154: 1794-1804.</Citation>
</Reference>
<Reference>
<Citation>Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10: 845-858.</Citation>
</Reference>
<Reference>
<Citation>Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Ahn HM, Bae S, Kim J, Kim JS et al. 2016. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. Journal of Integrative Plant Biology 58: 705-712.</Citation>
</Reference>
<Reference>
<Citation>Kim S, Park J, Yeom S-I, Kim Y-M, Seo E, Kim K-T, Kim M-S, Lee JM, Cheong K, Shin H-S et al. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology 18: 210.</Citation>
</Reference>
<Reference>
<Citation>Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, Wright SI, Weigel D. 2019. Long-term balancing selection drives evolution of immunity genes in Capsella. elife 8: e43606.</Citation>
</Reference>
<Reference>
<Citation>Kourelis J, van der Hoorn RAL. 2018. Defended to the Nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30: 285-299.</Citation>
</Reference>
<Reference>
<Citation>Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22: 2444-2458.</Citation>
</Reference>
<Reference>
<Citation>Kruger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296: 744-747.</Citation>
</Reference>
<Reference>
<Citation>Kuang H, Caldwell KS, Meyers BC, Michelmore RW. 2008. Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. The Plant Journal 54: 69-80.</Citation>
</Reference>
<Reference>
<Citation>Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. 2004. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16: 2870-2894.</Citation>
</Reference>
<Reference>
<Citation>Kuboyama T, Saito T, Matsumoto T, Wu J, Kanamori H, Taura S, Sato M, Marubashi W, Ichitani K. 2009. Fine mapping of HWC2, a complementary hybrid weakness gene, and haplotype analysis around the locus in rice. Rice 2: 93-103.</Citation>
</Reference>
<Reference>
<Citation>Lee RRQ, Chae E. 2020. Variation patterns of NLR clusters in Arabidopsis thaliana genomes. Plant Communications 1: 100089.</Citation>
</Reference>
<Reference>
<Citation>Leister D. 2004. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends in Genetics 20: 116-122.</Citation>
</Reference>
<Reference>
<Citation>Lewis JD, Lee AH-Y, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn J-Y, Guttman DS et al. 2013. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proceedings of the National Academy of Sciences, USA 110: 18722-18727.</Citation>
</Reference>
<Reference>
<Citation>Li L, Habring A, Wang K, Weigel D. 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host & Microbe 27: 405-417.e6.</Citation>
</Reference>
<Reference>
<Citation>Li X, Clarke JD, Zhang Y, Dong X. 2001. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Molecular Plant-Microbe Interactions 14: 1131-1139.</Citation>
</Reference>
<Reference>
<Citation>Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, Wang Z. 2017. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proceedings of the National Academy of Sciences, USA 114: E7450-E7459.</Citation>
</Reference>
<Reference>
<Citation>Lozano-Torres JL, Wilbers RH, Gawronski P, Boshoven JC, Finkers-Tomczak A, Cordewener JH, America AH, Overmars HA, Van't Klooster JW, Baranowski L et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences, USA 109: 10119-10124.</Citation>
</Reference>
<Reference>
<Citation>Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H, Egelman EH. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156: 1193-1206.</Citation>
</Reference>
<Reference>
<Citation>Lu H, Rate DN, Song JT, Greenberg JT. 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15: 2408-2420.</Citation>
</Reference>
<Reference>
<Citation>Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.</Citation>
</Reference>
<Reference>
<Citation>Ma X-F, Li Y, Sun J-L, Wang T-T, Fan J, Lei Y, Huang Y-Y, Xu Y-J, Zhao J-Q, Xiao S et al. 2014. Ectopic expression of RESISTANCE TO POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis. Plant and Cell Physiology 55: 1484-1496.</Citation>
</Reference>
<Reference>
<Citation>Mackey D, Holt BF 3rd, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743-754.</Citation>
</Reference>
<Reference>
<Citation>McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB. 2000. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. The Plant Journal 22: 523-529.</Citation>
</Reference>
<Reference>
<Citation>Michelmore RW, Meyers BC. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research 8: 1113-1130.</Citation>
</Reference>
<Reference>
<Citation>Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S. 2011. Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. The Plant Journal 68: 114-128.</Citation>
</Reference>
<Reference>
<Citation>Montanari S, Brewer L, Lamberts R, Velasco R, Malnoy M, Perchepied L, Guerif P, Durel CE, Bus VG, Gardiner SE et al. 2016. Genome mapping of postzygotic hybrid necrosis in an interspecific pear population. Horticulture Research 3: 15064.</Citation>
</Reference>
<Reference>
<Citation>Monteiro F, Nishimura MT. 2018. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annual Review of Phytopathology 56: 243-267.</Citation>
</Reference>
<Reference>
<Citation>Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333: 596-601.</Citation>
</Reference>
<Reference>
<Citation>Ohno S. 1970. Evolution by gene duplication. Berlin, Germany: Springer.</Citation>
</Reference>
<Reference>
<Citation>One Thousand Plant Transcriptomes Initiative. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574: 679-685.</Citation>
</Reference>
<Reference>
<Citation>Orgil U, Araki H, Tangchaiburana S, Berkey R, Xiao S. 2007. Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana. Genetics 176: 2317-2333.</Citation>
</Reference>
<Reference>
<Citation>Orr HA. 1996. Dobzhansky, Bateson, and the genetics of speciation. Genetics 144: 1331-1335.</Citation>
</Reference>
<Reference>
<Citation>Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294-2316.</Citation>
</Reference>
<Reference>
<Citation>Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco M-J, Crute I, Michelmore R. 2016. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210: 309-326.</Citation>
</Reference>
<Reference>
<Citation>Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC. 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology 15: 968-973.</Citation>
</Reference>
<Reference>
<Citation>Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H et al. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341: 786-788.</Citation>
</Reference>
<Reference>
<Citation>Petrie EJ, Czabotar PE, Murphy JM. 2019. The structural basis of necroptotic cell death signaling. Trends in Biochemical Sciences 44: 53-63.</Citation>
</Reference>
<Reference>
<Citation>Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nature Reviews Genetics 11: 175-180.</Citation>
</Reference>
<Reference>
<Citation>Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. 2019. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytologist 225: 1327-1342.</Citation>
</Reference>
<Reference>
<Citation>Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ. 2018. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proceedings of the National Academy of Sciences, USA 115: E10979-E10987.</Citation>
</Reference>
<Reference>
<Citation>Ramos PS, Shedlock AM, Langefeld CD. 2015. Genetics of autoimmune diseases: insights from population genetics. Journal of Human Genetics 60: 657-664.</Citation>
</Reference>
<Reference>
<Citation>Ravensdale M, Bernoux M, Ve T, Kobe B, Thrall PH, Ellis JG, Dodds PN. 2012. Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathogens 8: e1003004.</Citation>
</Reference>
<Reference>
<Citation>Ray SK, Macoy DM, Kim WY, Lee SY, Kim MG. 2019. Role of RIN4 in regulating PAMP-triggered immunity and effector-triggered immunity: current status and future perspectives. Molecules and Cells 42: 503-511.</Citation>
</Reference>
<Reference>
<Citation>Redditt TJ, Chung EH, Zand Karimi H, Rodibaugh N, Zhang Y, Trinidad JC, Kim JH, Zhou Q, Shen M, Dangl JL et al. 2019. AvrRpm1 functions as an ADP-ribosyl transferase to modify NOI-domain containing proteins, including Arabidopsis and soybean RPM1-interacting protein 4. Plant Cell 31: 2664-2681.</Citation>
</Reference>
<Reference>
<Citation>Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PR, Beynon JL. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17: 1839-1850.</Citation>
</Reference>
<Reference>
<Citation>Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J. 2018. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular Plant 11: 414-428.</Citation>
</Reference>
<Reference>
<Citation>Revilla-García A, Fernández C, Moreno-del Álamo M, de los Ríos V, Vorberg IM, Giraldo R. 2020. Intercellular transmission of a synthetic bacterial cytotoxic prion-like protein in mammalian cells. MBio 11: e02937-02919.</Citation>
</Reference>
<Reference>
<Citation>Riek R, Saupe SJ. 2016. The HET-S/s prion motif in the control of programmed cell death. Cold Spring Harbor Perspectives in Biology 8: a023515.</Citation>
</Reference>
<Reference>
<Citation>Ritter C, Dangl JL. 1996. Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes. Plant Cell 8: 251-257.</Citation>
</Reference>
<Reference>
<Citation>Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308: 1783-1786.</Citation>
</Reference>
<Reference>
<Citation>Sakaguchi K, Nishijima R, Iehisa JC, Takumi S. 2016. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 144: 523-533.</Citation>
</Reference>
<Reference>
<Citation>Sato YI, Morishima H. 1987. Studies on the distribution of complementary genes causing F1 weakness in common rice and its wild relatives. 2. Distribution of two complementary genes, Hwc-1 and Hwc-2 gene in native cultivars and its wild relatives of tropical Asia. Euphytica 36: 425-431.</Citation>
</Reference>
<Reference>
<Citation>Schreiber KJ, Bentham A, Williams SJ, Kobe B, Staskawicz BJ. 2016. Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLoS Pathogens 12: e1005769.</Citation>
</Reference>
<Reference>
<Citation>Selote D, Kachroo A. 2010. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. Plant Physiology 153: 1199-1211.</Citation>
</Reference>
<Reference>
<Citation>Seo E, Kim S, Yeom SI, Choi D. 2016. Genome-wide comparative analyses reveal the dynamic evolution of nucleotide-binding leucine-rich repeat gene family among solanaceae plants. Frontiers in Plant Science 7: 1205.</Citation>
</Reference>
<Reference>
<Citation>Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA. 2008. Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20: 1169-1183.</Citation>
</Reference>
<Reference>
<Citation>Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ. 2016. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiology 170: 2095-2109.</Citation>
</Reference>
<Reference>
<Citation>Sicard A, Kappel C, Josephs EB, Lee YW, Marona C, Stinchcombe JR, Wright SI, Lenhard M. 2015. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nature Communications 6: 7960.</Citation>
</Reference>
<Reference>
<Citation>Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences, USA 106: 1654-1659.</Citation>
</Reference>
<Reference>
<Citation>Song L, Guo W, Zhang T. 2009. Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. TAG. Theoretical and Applied Genetics. 119: 33-41.</Citation>
</Reference>
<Reference>
<Citation>Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL et al. 2018. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics 50: 285-296.</Citation>
</Reference>
<Reference>
<Citation>Steinbrenner AD, Goritschnig S, Staskawicz BJ. 2015. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathogens 11: e1004665.</Citation>
</Reference>
<Reference>
<Citation>Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G, Peditto D, Jordan T, Keller B. 2014. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. The Plant Journal 79: 893-903.</Citation>
</Reference>
<Reference>
<Citation>Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K et al. 2016. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like resistance locus underlies three different cases of EDS1-conditioned autoimmunity. PLoS Genetics 12: e1005990.</Citation>
</Reference>
<Reference>
<Citation>Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. 2014. A plug release mechanism for membrane permeation by MLKL. Structure 22: 1489-1500.</Citation>
</Reference>
<Reference>
<Citation>Swanson KV, Deng M, Ting JP. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology 19: 477-489.</Citation>
</Reference>
<Reference>
<Citation>Świadek M, Proost S, Sieh D, Yu J, Todesco M, Jorzig C, Rodriguez Cubillos AE, Plötner B, Nikoloski Z, Chae E et al. 2017. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. New Phytologist 213: 900-915.</Citation>
</Reference>
<Reference>
<Citation>Takahashi H, Miller J, Nozaki Y, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP. 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. The Plant Journal 32: 655-667.</Citation>
</Reference>
<Reference>
<Citation>Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E et al. 2017. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358: 888-893.</Citation>
</Reference>
<Reference>
<Citation>Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77.</Citation>
</Reference>
<Reference>
<Citation>Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology 143: 364-377.</Citation>
</Reference>
<Reference>
<Citation>Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C et al. 2010. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632-636.</Citation>
</Reference>
<Reference>
<Citation>Todesco M, Kim ST, Chae E, Bomblies K, Zaidem M, Smith LM, Weigel D, Laitinen RA. 2014. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. PLoS Genetics 10: e1004459.</Citation>
</Reference>
<Reference>
<Citation>Toruno TY, Stergiopoulos I, Coaker G. 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of Phytopathology 54: 419-441.</Citation>
</Reference>
<Reference>
<Citation>Tran DTN, Chung EH, Habring-Muller A, Demar M, Schwab R, Dangl JL, Weigel D, Chae E. 2017. Activation of a plant NLR complex through heteromeric association with an autoimmune risk variant of another NLR. Current Biology 27: 1148-1160.</Citation>
</Reference>
<Reference>
<Citation>Tsuruta M, Mukai Y. 2019. Fine mapping of a locus presumably involved in hybrid inviability (HIs-1) between flowering cherry cultivar Cerasus × yedoensis 'Somei-yoshino' and its wild relative C. spachiana. Breeding science 69: 658-664.</Citation>
</Reference>
<Reference>
<Citation>Vaid N, Laitinen RAE. 2019. Diverse paths to hybrid incompatibility in Arabidopsis. The Plant Journal 97: 199-213.</Citation>
</Reference>
<Reference>
<Citation>Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178: 1260-1272.</Citation>
</Reference>
<Reference>
<Citation>Van der Biezen EA, Jones JD. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences 23: 454-456.</Citation>
</Reference>
<Reference>
<Citation>Velasquez AC, Castroverde CDM, He SY. 2018. Plant-pathogen warfare under changing climate conditions. Current Biology 28: R619-R634.</Citation>
</Reference>
<Reference>
<Citation>Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M et al. 2015. The Decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host & Microbe 18: 285-295.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang H-W, Zhou J-M, Chai J. 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang H-W et al. 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364: eaav5868.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Devoto A, Turner JG, Xiao S. 2007. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Molecular Plant-Microbe Interactions 20: 966-976.</Citation>
</Reference>
<Reference>
<Citation>Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host & Microbe 16: 364-375.</Citation>
</Reference>
<Reference>
<Citation>Wróblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawłowski K, Michelmore RW et al. 2018. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biology 16: e2005821.</Citation>
</Reference>
<Reference>
<Citation>Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S. 2017. NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences, USA 114: 8113-8118.</Citation>
</Reference>
<Reference>
<Citation>Wu CH, Derevnina L, Kamoun S. 2018. Receptor networks underpin plant immunity. Science 360: 1300-1301.</Citation>
</Reference>
<Reference>
<Citation>Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW, Xu YC, Guo YL. 2017. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biology 18: 217.</Citation>
</Reference>
<Reference>
<Citation>Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X. 2019. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytologist 222: 938-953.</Citation>
</Reference>
<Reference>
<Citation>Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.</Citation>
</Reference>
<Reference>
<Citation>Xiao S, Emerson B, Ratanasut K, Patrick E, O'Neill C, Bancroft I, Turner JG. 2004. Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Molecular Biology and Evolution 21: 1661-1672.</Citation>
</Reference>
<Reference>
<Citation>Xiao Z, Hu Y, Zhang X, Xue Y, Fang Z, Yang L, Zhang Y, Liu Y, Li Z, Liu X et al. 2017. Fine mapping and transcriptome analysis reveal candidate genes associated with hybrid lethality in cabbage (Brassica oleracea). Genes 8: 147.</Citation>
</Reference>
<Reference>
<Citation>Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M. 2010. Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Molecular Genetics and Genomics 283: 305-315.</Citation>
</Reference>
<Reference>
<Citation>Yang S, Hua J. 2004. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16: 1060-1071.</Citation>
</Reference>
<Reference>
<Citation>Yi H, Richards EJ. 2007. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19: 2929-2939.</Citation>
</Reference>
<Reference>
<Citation>Yue J-X, Meyers BC, Chen J-Q, Tian D, Yang S. 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytologist 193: 1049-1063.</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350: 404-409.</Citation>
</Reference>
<Reference>
<Citation>Zhang P, Hiebert CW, McIntosh RA, McCallum BD, Thomas JB, Hoxha S, Singh D, Bansal U. 2016. The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS. Theoretical and Applied Genetics 129: 485-493.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T, Casey LW, Raaymakers TM, Hu J, Croll TI, Schreiber KJ et al. 2017a. Multiple functional self-association interfaces in plant TIR domains. Proceedings of the National Academy of Sciences, USA 114: e2046-e2052.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Dodds PN, Bernoux M. 2017b. What do we know about NOD-like receptors in plant immunity? Annual review of Phytopathology 55: 205-229.</Citation>
</Reference>
<Reference>
<Citation>Zhong Y, Cheng ZM. 2016. A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Scientific Reports 6: 32923.</Citation>
</Reference>
<Reference>
<Citation>Zhou J-M, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell 181: 978-989.</Citation>
</Reference>
<Reference>
<Citation>Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R et al. 2018. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genetics 14: e1007628.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>Singapour</li>
</country>
<orgName>
<li>Université nationale de Singapour</li>
</orgName>
</list>
<tree>
<country name="Singapour">
<noRegion>
<name sortKey="Wan, Wei Lin" sort="Wan, Wei Lin" uniqKey="Wan W" first="Wei-Lin" last="Wan">Wei-Lin Wan</name>
</noRegion>
<name sortKey="Castel, Baptiste" sort="Castel, Baptiste" uniqKey="Castel B" first="Baptiste" last="Castel">Baptiste Castel</name>
<name sortKey="Chae, Eunyoung" sort="Chae, Eunyoung" uniqKey="Chae E" first="Eunyoung" last="Chae">Eunyoung Chae</name>
<name sortKey="Charoennit, Nuri" sort="Charoennit, Nuri" uniqKey="Charoennit N" first="Nuri" last="Charoennit">Nuri Charoennit</name>
</country>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Kim, Sang Tae" sort="Kim, Sang Tae" uniqKey="Kim S" first="Sang-Tae" last="Kim">Sang-Tae Kim</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000145 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000145 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32970825
   |texte=   Genetics of autoimmunity in plants: an evolutionary genetics perspective.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32970825" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020